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Abstract 

The response of an f.c.c, lattice with Lennard-Jones interaction under symmetric lattice extension has been 
studied by Monte Carlo simulation at several temperatures. The critical strain at which the crystal undergoes a 
structural change is found to be well predicted by the mechanical stability limit expressed in terms of either 
the elastic constants or the bulk modulus. At low temperature (reduced temperature T= 0.125), lattice decohesion 
is observed in the form of cleavage fracture, whereas at higher temperature (T= 0.3) the strained system deforms 
by cavitation with some degree of local plasticity. At still higher temperature (T=0.5) the lattice undergoes 
homogeneous disordering with all the attendant characteristics of melting. 

I. Introduction 

It is by now well established that solid state amor- 
phization (SSA), the process of crystal-to-glass tran- 
sition, can be induced in intermetallic compounds by 
various perturbations ranging from particle beam ir- 
radiations, chemical reactions, to mechanical defor- 
mations [1-3]. A fundamental question which still re- 
mains concerns the underlying nature of the transition 
and the relative importance of the effects of point 
defects, chemical disorder, and other  possible driving 
forces for lattice destabilization. Following the obser- 
vation that structural disordering in all cases is ac- 
companied by a volume expansion [2], it has been 
suggested that the role of local density variations in 
SSA may be analogous to that in the melting transition 
[4]. The implication is that at temperatures below the 
triple point, essentially the melting point Tm at zero 
pressure, a sudden volume expansion (on a time scale 
short compared with that required for equilibrium 
sublimation) may bring about structural disordering. 

In this paper we report  the results of Monte Carlo 
simulation of the structural response of an f.c.c, crystal 
to pure dilatation imposed at constant temperatures. 
The purpose of the study is to test the prediction of 
lattice instability based on elastic constant criteria and 
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to determine by direct observation whether crystal 
disordering can be induced by symmetric lattice ex- 
tension. Using the Lennard-Jones potential to model 
the interatomic interaction, we find that the critical 
strain at which structural change occurs is well predicted 
by the mechanical stability limits. At low temperature 
(reduced temperature T =  0.125) anisotropic lattice de- 
cohesion occurs at the critical strain and overall the 
system remains crystalline. At higher temperature 
(T=0.3)  cavitation-like local deformation occurs with 
indications of anisotropic disordering. At still higher 
temperature (T=0.5)  the lattice disorders uniformly 
with all the characteristics of melting. 

2. Simulation model and procedure 

The simulation system is a cubic cell of N particles 
arranged on an f.c.c, lattice. The particles interact with 
each other through a Lennard-Jones (6-12) potential 
which is truncated at a distance Rc and shifted to zero 
at the cut-off. The cell is periodic in all three directions. 
In each simulation run at a certain temperature,  the 
lattice parameter  a is held fixed while the particles are 
allowed to move by a Monte Carlo process [5]. The 
process is then repeated at an incrementally larger a. 
Typically the first 10000 moves per particle are discarded 
as equilibration, and another  30000 moves per particle 
are made to accumulate the configurations for property 
calculations. All quantities reported below will be ex- 
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pressed in reduced units where length and energy are 
scaled by the parameters o- and e of the potential. 

Simulation of strain-induced response has been car- 
ried out at the temperatures T=0.125, 0.3, 0.5, and 
0.8. (As a reference, for the Lennard-Jones potential 
Tm can be taken to be 0.61 [6].) Most of the runs were 
made with a cell of 500 particles, but runs using N =  108 
and 864 were also performed to give some indications 
of system size effects. In all the runs the value of R~ 
is 2.3273. 

3. Pressure and potential energy responses 

Figure 1 shows the variation at T=  0.3 of the hy- 
drostatic pressure, calculated using the virial expression 
[7], as the lattice parameter a of the f.c.c, cell is increased 
incrementally. Starting at a value of the lattice parameter 
which gives zero pressure, the system is seen to go 
into negative pressure as isotropic strain is imposed. 
This negative pressure increases monotonically and 
appears to level off at a maximum value. With further 
lattice dilatation the pressure first decreases somewhat 
and then jumps abruptly to a considerably reduced 
though still finite value. The N---500 data exhibit this 
characteristic behavior quite clearly. The data for 
N =  864 are quite consistent with these results, whereas 
the onset of the abrupt change in the small system, 
N =  108, occurs at a somewhat larger value of strain. 

Figure 2 shows the potential energy of the system 
in response to isotropic strain. As the lattice goes into 
negative pressure, more and more strain energy is stored 
in the system. This continues until the pressure changes 
suddenly (cf. Fig. 1), at which point the potential energy 
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Fig. 1. Variat ion in hydrostatic pressure  with lattice pa ramete r  
a at T=0 .3 :  N =  108 (A) ,  500 (C)), 864 (O).  
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Fig. 2. Same as Fig. 1 except variation is that of the potential 
energy. 

drops correspondingly. Again, the N=864 data are 
consistent with the N = 500 results, whereas for N =  108 
the decrease in potential energy occurs at higher strain 
and is barely discernible. 

The existence of a critical value of imposed strain, 
as indicated in Figs. 1 and 2, suggests the onset of a 
structural transition which we will investigate in the 
following by examining directly the atomic configurations 
produced at each incremental strain. As for the nature 
of the transition, one can ask what the connection is 
between the behavior observed in Fig. 1 and the me- 
chanical stability limit which one can derive for a uniform 
lattice. We have already noted that the tension appears 
to reach a maximum value at a lattice parameter which 
we will denote by ac, and that ac is distinctly smaller 
than the critical value at which the pressure jumps 
suddenly, which we will denote by %. Since we have 
results for three system sizes, we can perform a 1/N 
extrapolation on the value of ap as directly observed 
in the simulation data. This gives a critical strain 
~p=(ap-ao)/ao=O.0687. To determine Ec, we fit for 
each N the several data points for the pressure in the 
vicinity of ac to a polynomial, and calculate dp/da = 0 
from the fit. After a similar 1/N extrapolation we obtain 
e~ = 0.0628. The apparent discrepancy between % and 
ec is believed not to be significant given the large 
fluctuations in the system pressure in the region of the 
critical behavior, and the fact that system size effects 
may not have been fully eliminated in our 1/N ex- 
trapolation based on limited data. 

4. Elastic constants 

Returning to the question of intrinsic mechanical 
stability limit, we have determined the elastic constants 
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of a cubic lattice by applying the fluctuation formula 
derived by Ray et al. [8] for a stressed solid. In the 
case of uniform strain, the adiabatic elastic constant 
C,-j~t is given by 

~ [ V 2NkBT (6.6jk + 6i,6j~) 
C~jk, = - ~BT 6(P,jP~,) + ----V--- 

+ (h~>?(r.b)X.b',X~bjX.bkX~b,) (1) 

where 

f(r) = r - 2[d2u (r)/dr 2 - -  x(r)] (2) 

eij= l[~a a'd)aj/m--b~>aX(rab~abiXabj] (3) 

and x(r)= [du(r)/drl/r, with u(r) being the interatomic 
potential function. In eqn. (1) lo and 1 are the lengths 
of the simulation cell before and after respectively the 
imposed strain, V is the volume of the strained cell 
which contains N particles, and ()  denotes an ensemble 
average. In addition, r,b is the separation distance 
between particles a and b, and x, bi is the ith cartesian 
component of the vector r,b. In eqn. (3), Pai is a 
momentum component and m the particle mass, and 
thus P~j is the stress tensor. 

Applying eqn. (1) to the atomic configurations gen- 
erated by the Monte Carlo runs, we have computed 
the three elastic constants C l l  , C12 , and C44. For a 
lattice to be mechanically stable one can show that the 
inequalities 

C l l > 0 ,  C l 1 - - C 1 2 > 0  , C 4 4 > 0  (4) 

must hold [9], together with C12> 0, arising from the 
physical condition that the Poisson ratio must be greater 
than zero [10]. These criteria may be compared with 
the requirement of positive isothermal bulk modulus 
BT = -- V(OP/OV)r, a thermodynamic condition. Our elas- 
tic constant results at T = 0.3 and different system sizes 
are shown in Fig. 3. It can be seen that all three elastic 
constants have decreased to quite small values in the 
region of the critical strain. The elastic constants behave 
normally while they are still positive, but, once an elastic 
constant has reached zero value, subsequent behavior 
at still larger strain displays unphysical oscillations. The 
first term in eqn. (1) represents the effects of stress 
tensor fluctuations. In the critical-strain region it is 
large and fluctuates strongly, thus giving rise to ap- 
preciable uncertainties in the calculated elastic con- 
stants. As a result we can only say that, as Cn approaches 
C,2, both appear to be approaching zero. At the same 
time, the data suggest that C44 remains finite at the 
critical strain. Within the estimated statistical error the 
mechanical stabili .ty limit seems to be consistent with 
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Fig. 3. Variations in the elastic constants (a) CH, (b) C12, and 
(c) C44 with lattice parameter a at T=0.3: N =  108 (•), 500 (O), 
864 (U]). 
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5. Structural responses 

The onset of a sudden change in the pressure and 
potential energy is an indication that an accompanying 
structural change must have also occurred. The above 
consideration of mechanical stability, while useful for 
determining the critical strain at which this change 
takes place, tells us nothing about the state into which 
the system evolves. For this information it is necessary 
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Fig. 4. System responses g(r) and diffraction pattern S(k) at 
T = 0 . 3 ,  N = 5 0 0 ,  and three values of  the lattice parameter: (a)  
a = 1.707, (b)  a = 1.723, and  (c) a = 1.747. S(k) is shown in each 
part as projections on kx (horizontal axis) and ky (vertical axis).  

to examine the atomic configurations at various stages 
of strain. 

We will characterize the atomic configurations in 
terms of the radial distribution function g(r) [7] which 
provides a measure of local spatial correlation, without 
specification of direction, and the corresponding quan- 
tity the static structure factor S(k), with k being a 
wavevector. By computing S(k) for a large number of 
suitably chosen k, one can generate a diffraction pattern 
which provides a measure of direction-dependent struc- 
tural order in the system. 

Figure 4 shows the g(r) and S(k) results for the 
T= 0.3 runs with N =  500 at three values of the lattice 
parameter a:a=al=l.707 specifies the system strain 
just before the pressure jump (cf. Fig. 1), a =a2 = 1.723 
is the value after two strain increments, and a = a 3 = 1.747 
is the last dilatation imposed in this series. First we 
notice that in all three cases the g(r) results are quite 
similar; in particular, a distinct peak can be seen at 
r= 1.7, the characteristic second-neighbor shell of the 
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f.c.c, lattice. The corresponding diffraction patterns all 3 / 
display high intensity in the region around kx=ky = 1, ] as one would expect for the f.c.c, lattice. However, 2 

whereas the diffraction pattern at al is quite symmetric, 
an asymmetry along kx and ky about the Bragg position D (×) 
kx=ky = 1 can be noticed at az and a 3. 1- 

More detailed information on the structural change 
in going from al to aa and a 3 is provided by the density 
profiles given in Figs. 5-7. One sees that at al the 0- 
atomic planes along each direction of cubic symmetry 
are well ordered as in a perfect (undeformed) lattice. 
At a2, after the pressure jump, symmetry is clearly 2 . 0  
broken in t hey  direction; there appears an extra atomic 

1.5- plane along this direction, and, moreover, the system 
is no longer uniform along this direction. Another 

D(y) l.O- feature that can be seen in Fig. 6 is the distinctly non- 
zero value of the minima in the density profiles which 
implies significant atomic displacements from the orig- 0.5- 
inal lattice positions. In going from a2 to a3 (Fig. 7) o. 0 
the density profile along the y direction displays two 
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50 

extra planes relative to the x and z directions. We 
interpret this as a tendency to change from cubic to 
tetragonal structure. Also, the non-uniform density pro- 
files along the x and y directions suggest the nucleation 
of cavitation, first seen in Fig. 6 along the y direction. 

One may ask whether further structural changes will 
take place if the dilatation were increased further. In 
the series of simulations at T=0.3 using the N=864  
system, we have taken the system out to larger values 
of lattice parameter as shown in Fig. 8. Up to ap- 
proximately the same value of a=a3,  the observed 
behavior is similar to the N - 5 0 0  data shown in Figs. 
4-7. When the imposed strain is increased to a4 = 1.750 
and a5 = 1.757, the density profiles, given in Figs. 9 and 
10, reveal (i) pronounced cavitation along the direction 
of broken symmetry (x direction in this N =  864 series 
in contrast to y direction in the N=500  series), and 
(ii) increasing loss of well-ordered planar structure 
along the cubic directions of the original lattice. It is 
interesting that the structural deformations which are 
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clearly indicated by the density profiles do not give 
rise to any characteristic features in the g(r) and S(k) 
results in Fig. 8, apart from an indication of asymmetry 
in the latter. 

The structural responses at T=0.125 generally are 
similar to those just presented at T= 0.3. The pressure 
and potential energy responses exhibit the same jump 
behavior as in Figs. 1 and 2. The onset of cavitation 
is quite clearly seen and, as the system is further dilated, 
decohesion of the lattice planes occurs along a broken- 
symmetry direction. 

The structural response at T=0.5, on the contrary, 
is quite different from that at T= 0.3. Figure 11 shows 
a pressure jump at the critical strain, but now the 
corresponding potential energy change is an increase 
instead of a decrease as in Fig. 2. Examination of g(r), 
S(k) and density profiles at the strain after the pressure 
jump shows clearly that the system has become com- 
pletely disordered. It is also noteworthy that the mean- 
squared displacement function evaluated at the strain 
before and after the pressure jump, given in Fig. 12, 
reveals dramatically different mobility behavior over 
the same number of Monte Carlo sweeps. The essentially 
linear variation in the mean-squared displacement and 
the increased magnitude of this quantity observed after 
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Fig. 9. Dens i ty  profiles co r r e spond ing  to Fig. 8(a). 

the jump are strong indications of a liquid-like envi- 
ronment. 

6. Discussion 

In this work we have determined by Monte Carlo 
simulation and elastic constant calculations the struc- 
tural stability limit of an f.c.c. Lennard-Jones lattice 
under symmetric isothermal extension along the three 
directions of initial cubic symmetry. We have shown 
that at several temperatures the critical strain is de- 
termined by the Born criteria involving the elastic 
constants. The values of these strains define a stability 
curve in the temperature-density phase diagram as 
shown in Fig. 13. It has been suggested that the freezing 
curve which, like the melting curve, is defined only for 
temperatures above the triple point Tt, is effectively 
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also the mechanical stability curve in the sense of 
heating a crystal rapidly up to the limit of superheating 
[4]. It can be seen in Fig. 13 that the critical strains 
observed in the present work delineate the extension 
of the mechanical stability curve to temperatures below 
Tt. It has been conjectured that in crossing this stability 
curve the lattice will become disordered, thus providing 
a simple thermodynamic connection between melting 
and SSA [4]. What we have found is that in crossing 
such a curve the lattice does become mechanically 
unstable as manifested by sudden jumps in the hy- 
drostatic pressure and the potential energy; however, 
the atomic configuration into which it evolves depends 
on the temperature. The instability is accompanied by 
symmetry breaking as shown clearly by the density 
profiles along the three cubic directions. At the same 
time, the system becomes non-uniform by the formation 
of a local region of relatively low density. We interpret 
this crystal response as cavitation which at T=0.125 
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Fig. 11. System responses at T=0.5 and N=500:  (a) pressure 
and (b) potential energy. Note similarity with Fig. 1 in the pressure 
and difference from Fig. 2 in the potential energy. 

(0.18Tt) leads to cleavage fracture on further lattice 
dilatation. At T= 0.3 (0.44T,), in addition to cavitation- 
like behavior, significant local disordering occurs as the 
system is strained beyond the instability. At T=0.5 
(0.74Tt) the system response at the instability is homo- 
geneous and complete disordering as in a melting 
transition. 

Regarding the question of whether pure volume 
expansion is sufficient to give rise to a crystal-to- 
amorphous transition, it appears that the present results 
on the Lennard-Jones system do not give a definitive 
answer. We feel that part of the problem stems from 
the relatively shallow well depth of the potential as 
compared with an EAM-type potential [12] for metals. 
Thus the Lennard-Jones potential gives considerably 
lower values for the elastic constants which make it 
difficult to distinguish between the criteria given by 
eqn. (4) and C 1 2 > 0 .  A study is underway using an 
EAM potential for f.c.c, metals to see the influence 
of potential function details on the structural response 
to imposed strain. 

As far as equation of state behavior is concerned, 
we can compare the Lennard-Jones system with the 
universal binding energy model [13], a simple two- 
parameter empirical description of the variation in the 
cohesive energy (the potential energy at zero temper- 



414 J. Wang et aL / Response of  crystals to dilatation 

0 , 6  " 

O.S' 

m ~. 0.4' 

"~ o.a 

0.2' g 
? 

O , t  
0 

0.0 

T=O.S (a) 

lo;oo =o;oo 3o oo 
Sweep 

0 
E 
Q 
0 ca 
O. 

"O 

m 

O" 
? 
M 
Q 

20' 

10' 

0 

r=0.5 (b) 

Io,oo =0;oo 30;00 
Sweep 

Fig. 12. Variation in mean-squared displacement function with 
number  of Monte  Carlo sweeps at two system strain states, (a) 
just before and (b) just after the pressure jump shown in Fig. 
11. The  difference in scale of the ordinate should be noted. 

I I 1 1 I I I 
CO 

5.C LENNARD-JONES PHASE D I A G R A M / . ~  _ 

/ J  2.5-  

I ' FLUID 

0 - ' - -  

I I I I I I I 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

N ~/V 
Fig. 13. Temperature-volume phase diagram of an atomic system 
in which the particles interact via the Lennard-Jones potential  
function [11]. Critical strains, converted to densities, observed 
in the present  simulation are added at the various temperatures  
(O). 

I 

0.8 

0.6 1 

0.4 

0.2 

0 

ature) with lattice parameter. According to this model, 
E(a) = AE E*(a *), with 

E*(a *) = - (1 + a* + 0.05a *3)e-"* (5) 

where AE is the minimum value of the cohesive energy 
and a * =  (a--aE)/l, aE being the lattice parameter at 
which the cohesive energy is a minimum and 1 a length 
scale which can be determined from the bulk modulus 
[13]. E* and a* are the scaled energy and lattice 
parameter. Figure 14(a) shows the comparison between 
the Lennard-Jones result and eqn. (5). Given E(a) one 
can find the pressure at zero temperature from P = - dE/ 
dV: 

P(V) = 3B[(V/Vo) v3 - 1](V/Vo)- 2~ 

× (1 - 0.15a * + 0.05a *)e -"* (6) 

where B is the bulk modulus and Vo=4~ra~/3. The 
comparison of the pressure calculated directly for the 
Lennard-Jones lattice with eqn. (6) is shown in Fig. 
14(b). Taken together with Fig. 14(a) these results show 
how well the Lennard-Jones system can be described 
by the simple analytic expressions given by the universal 
binding energy model, a description which has been 
found useful for metals. To see the effects of temperature 
we show in Fig. 15 the pressure variation in the vicinity 
of the critical strain obtained from the Monte Carlo 
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pressure-volume relation of the Lennard-Jones crystal at zero 
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Fig. 15. Pressure-volume relation of the Lennard-Jones crystal 
at T=  0.125 ( - - )  showing a jump which is absent in the universal 
binding energy model ( . . . .  , same result as in Fig. 14 but on 
a different scale). 

simulation at T=0.125 and the zero-temperature vari- 
ation given by eqn. (6). The absence of a pressure 
jump in the latter clearly underscores the role of thermal 
fluctuations in symmetry breaking and initiation of 
structural deformation. 
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